As fetal electrocardiograph analysis comes of age, there's a growing body of research to suggest it can serve as a valuable adjunct to traditional EFM. Here's an expert review on the technology and the data supporting it.
It's been more than three decades since clinicians started using electronic fetal monitoring (EFM) to assist during deliveries. When the technology was first put into widespread use, we had hoped it would significantly reduce perinatal mortality and complications, especially neurologic damage. Unfortunately, clinical experience has proven otherwise; in fact, [since the introduction of EFM, rates of operative delivery have significantly increased.1 ]
In the mid-1990s, an expert panel convened by the National Institute of Child Health and Human Development (NICHD) developed a set of standard terms to help clinicians interpret FHR patterns.2 In the decade since that terminology was introduced, there has been little apparent improvement in any of the outcomes associated with EFM.3
To enhance the performance of EFM, several adjuncts have been developed, including intermittent fetal scalp blood (FSB) pH and, more recently, fetal pulse oximetry (FPO). While FSB pH improves the specificity of FHR pattern interpretation, it is rarely used in the United States.4 And a recent randomized trial comparing EFM and FPO to standard EFM alone has failed to show that FPO improved perinatal outcomes or lowered cesarean delivery rates.5
The science behind the STAN system
In adult medicine, myocardial hypoperfusion that's been induced by coronary artery insufficiency can be detected during a graded exercise test by ECG changes such as elevated T-waves or depressed ST segments. [In fetal medicine, FECG analysis provides a window into the response to the stress of labor and is based on a considerable amount of experimental animal data.7 ]
Development of the STAN clinical system
The development of the current STAN system is based on clinical studies conducted during the 1980s. These studies validate the basic physiologic findings explained above. Several technological advances over the years have allowed application of the experimental findings to the eventual development of the STAN monitors, including:
Removing parental consent reduces delays in adolescent abortion care
February 12th 2025A new study links the removal of parental consent requirements for abortion in Massachusetts to significantly earlier gestational age at the time of the procedure, highlighting the impact of reduced barriers on timely reproductive care.
Read More
Variations reported in state-level maternal death causes
February 11th 2025A recent study highlights significant variations in pregnancy-related deaths across US states, emphasizing the need for targeted policies to address homicide, suicide, and drug overdose among pregnant and postpartum individuals.
Read More
AI analysis reveals key risk factors for severe pregnancy outcomes
February 11th 2025A new artificial intelligence-based study found risk factor combinations linked to severe adverse pregnancy outcomes, offering a more personalized and transparent approach to risk assessment in obstetrics.
Read More