Discordance in Diagnosis of Osteoporosis using Spine and Hip Bone Densitometry
Diagnostic discordance for osteoporosis is the observation that the T-score of an individual patient varies from one key measurement site to another, falling into two different diagnostic categories identified by the World Health Organization (WHO) classification system.
Published 11 March 2005
BMC Endocrine Disorders 2005, 5:3 doi:10.1186/1472-6823-5-3
Abstract (provisional)
Background
Diagnostic discordance for osteoporosis is the observation that the T-score of an individual patient varies from one key measurement site to another, falling into two different diagnostic categories identified by the World Health Organization (WHO) classification system. This study was conducted to evaluate the presence and risk factors for this phenomenon in a large sample of Iranian population.
Methods
Demographic data, anthropometric measurements, and risk factors for osteoporosis were derived from a database on 4229 patients referred to a community-based outpatient osteoporosis testing center from 2000 to 2003. Dual-energy X-ray absorptiometry (DXA) was performed on L1–L4 lumbar spine and total hip for all cases. Minor discordance was defined as present when the difference between two sites was no more than one WHO diagnostic class. Major discordance was present when one site is osteoporotic and the other is normal. Subjects with incomplete data were excluded.
Results
In 4188 participants (3848 female, mean age 53.4 ± 11.8 years), major discordance, minor discordance, and concordance of T-scores were seen in 2.7%, 38.9% and 58.3%, respectively. In multivariate logistic regression analysis, older age, menopause, obesity, and belated menopause were recognized as risk factors and hormone replacement therapy as a protective factor against T-score discordance.
Conclusion
The high prevalence of T-score discordance may lead to problems in interpretation of the densitometry results for some patients. This phenomenon should be regarded as a real and prevalent finding and physicians should develop a particular strategy approaching to these patients.
Background
Osteoporosis is defined as a systemic skeletal disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture [1,2]. This definition indicates that measurement of bone mineral density (BMD) is a central component to diagnosis of the disease [3].
'T score' is a statistical definition which indicates the difference between patient's BMD and mean bone density of normal population in the age of 20 – 30 (reference population) [3]. This value shows the difference in terms of standard deviations. According to the World Health Organization (WHO) classification system, T scores under the value of -2.5 are considered as osteoporosis and between -1 and -2.5 as osteopenia. These figures are usually calculated separately for two different sites of lumbar spine and total hip.
Discordance in diagnosis of osteoporosis is defined as presence of different categories of T scores (osteoporosis, osteopenia, and normal) in two skeletal sites of an individual patient [4]. This phenomenon has been divided into two groups: major and minor [5]. Minor discordance happens when the different diagnostic classes are adjacent; i.e., patient is diagnosed as osteoporotic in one site and osteopenic in the other site, or, osteopenic in one site and normal in the other site. If the diagnosis is osteoporosis in one site and the other site is in the normal range, the discordance falls into the major class.
Actually, one of the reasons for measuring BMD in several sites is the presence of discordance, which can affect the diagnosis and therapeutic plan in an individual person. Various studies have analyzed the prevalence and impact of T-score discordance on different aspects of management of osteoporosis [5-9]. However, most of these studies did not evaluate risk factors for this phenomenon.
Given this background and concerning the need for the estimation of the impact of this phenomenon in our country, we aimed to evaluate the presence and risk factors for T-score discordance in a large sample of Iranian population.
Methods
Participants in this study were 4229 persons who underwent bone densitometry in outpatient clinic of Endocrinology & Metabolism Research Center in Tehran from 2000 to 2003. A considerable proportion of these cases were healthy post-menopausal women referred by clinicians for densitometric evaluations. All study participants signed the informed consent for any scientific approach to their medical registered data. Our Institutional Review Board approved this study.
A standardized questionnaire was filled before densitometry for all participants. Demographic data (including age and sex) as well as other known or suspicious risk factors for osteoporosis (including menopause, age at menopause, age at menarche, history of osteoporotic fractures, drugs, and smoking) were collected. All participants had their standing height measured using a stadiometer to the nearest 0.5 cm. Weight was measured on a standard weighting scale with a precision of 0.5 kg. Body mass index (BMI) was calculated as weight (kg) divided by height (m) squared. All the BMD measurements were done for diagnostic purposes and none of the participants were on the treatment with bone active agents (hormone replacement therapy was not considered a bone active agent).
BMD was measured at the lumbar spine and total hip with dual X-ray absorptiometry (DXA) using a Lunar DPXMD densitometer (Lunar 7164, GE, Madison, WI) by a trained operator according to the manufacturer's instruction. The instrument was calibrated weekly by using appropriate phantoms. Precision error for BMD measurements was 1–1.5% in the lumbar and 2–3% in the femoral regions. The device normative data of US population for spine BMD and NHANES III study for femur BMD were used as reference values.
All the data gained from densitometry and questionnaires were entered into a comprehensive relational database. The participants with incomplete data were excluded from the study. To compare presence of various risk factors in participants with and without T-score discordance, chi-square test and independent sample t-test were used firstly. Potential risk factors were entered to a multivariate binary logistic regression analysis and the resulted odds ratios with 95% confidence intervals were reported. P values less than 0.05 were taken to indicate statistical significance. Statistical analyses were performed using Stata Statistical Package, version 8.0 (Stata Corporation, College Station, Tx).
Internal server error