Evaluation of Easily Measured Risk Factors in the Prediction of Osteoporotic Fractures
Fracture represents the single most important clinical event in patients with osteoporosis, yet remains under-predicted. As few premonitory symptoms for fracture exist, it is of critical importance that physicians effectively and efficiently identify individuals at increased fracture risk.
Abstract & Research Article
Background
Fracture represents the single most important clinical event in patients with osteoporosis
Methods
Of 3426 postmenopausal women in CANDOO, 40, 158, 99, and 64 women developed a new hip, vertebral, wrist or rib fracture, respectively. Seven easily measured risk factors predictive of fracture in research trials were examined in clinical practice including: age (<65, 65–69, 70–74, 75–79, 80+ years), rising from a chair with arms (yes, no), weight (< 57, ≥ 57kg), maternal history of hip facture (yes, no), prior fracture after age 50 (yes, no), hip T-score (>-1, -1 to >-2.5, ≤-2.5), and current smoking status (yes, no). Multivariable logistic regression analysis was conducted.
Results
The inability to rise from a chair without the use of arms (3.58; 95% CI: 1.17, 10.93) was the most significant risk factor for new hip fracture. Notable risk factors for predicting new vertebral fractures were: low body weight (1.57; 95% CI: 1.04, 2.37), current smoking (1.95; 95% CI: 1.20, 3.18) and age between 75–79 years (1.96; 95% CI: 1.10, 3.51). New wrist fractures were significantly identified by low body weight (1.71, 95% CI: 1.01, 2.90) and prior fracture after 50 years (1.96; 95% CI: 1.19, 3.22). Predictors of new rib fractures include a maternal history of a hip facture (2.89; 95% CI: 1.04, 8.08) and a prior fracture after 50 years (2.16; 95% CI: 1.20, 3.87).
Conclusion
This study has shown that there exists a variety of predictors of future fracture, besides BMD, that can be easily assessed by a physician. The significance of each variable depends on the site of incident fracture. Of greatest interest is that an inability to rise from a chair is perhaps the most readily identifiable significant risk factor for hip fracture and can be easily incorporated into routine clinical practice.
Background
Osteoporosis affects one in four women and one in eight men in Canada [1]. Its consequences are devastating both to the individual and society in terms of suffering, disability, and increased health care
Predicting incident fractures is critical today, but in light of the aging demographics, will have even greater importance in the future. Early recognition and treatment of osteoporotic patients is crucial to the prevention of these fractures. A number of risk factors have come to define those at increased risk for osteoporotic fracture and much work has been done in an attempt to delineate the critical variables [6-11]. In order for risk assessment to be effective and efficient, it must be practical and have high predictive value for the identification of fractures. Black et al., with use of data from the Study of Osteoporotic Fractures (SOF), developed the Fracture Index [12]. This assessment tool for predicting fracture risk in osteoporotic post-menopausal women was shown to be predictive of incident osteoporotic fractures (hip, vertebral, wrist and rib) in post-menopausal women and was validated using the EPIDOS study [12]. The Fracture Index assessment tool considers seven variables: age, fracture after age 50, history of maternal hip fracture after age 50, weight less than 125 lb (57 kg), smoking status, use of arms to stand up from a chair and bone mineral density (BMD) T-score [12]. These variables were chosen not only based on their predictive value but also because of their ease of assessment in a clinical setting. As a result, we sought to examine the usefulness of these risk factors in a clinical specialist setting.
The purpose of this study was to examine whether the risk factors outlined in the Fracture Index could be used to predict new incident osteoporotic fractures of the hip, vertebra, wrist, and rib in postmenopausal women who are registered in The Canadian Database for Osteoporosis and Osteopenia (CANDOO).
Methods
Study Design
An analysis using prospective collected patient information from the CANDOO database was conducted. The CANDOO registry is a multi-site (Calgary, Winnipeg, Saskatoon, Toronto, Hamilton, Montreal, Quebec City) database consisting of more than 10,000 men and women who have been referred to specialists for osteoporosis [13]. The CANDOO database is designed to gather osteoporosis-related clinical information in a prospective manner displaying a record at each clinical visit. Patient information is entered and recorded into a central database [13]. It includes information on patient demographics; vertebral, rib, wrist and hip fracture history; gynecological history; use of osteoporosis related drugs; drug side effects; use of corticosteroids and other medications; dietary calcium intake; smoking habits; physical activity; fall history; prior medical history; family history including fractures; a self administered osteoporosis health related quality of life instrument; basic laboratory results and bone density measurements [13]. Patients were followed yearly with detailed assessments at clinical centres. Each yearly visit involved the collection of information similar to that collected at baseline.
All centres with a baseline CANDOO assessment (visit 1) between 1990 and 1999 with follow-up data available were selected. Only postmenopausal women ≥ 55 years of age with follow-up data available entered in CANDOO were considered for inclusion. Individuals with no follow-up assessments or males were excluded. Any individuals experiencing multiple fractures were also excluded in order to group subjects into hip, vertebral, wrist or rib fracture groups respectively. This exclusion criteria limited the number of applicable subjects from CANDOO and simultaneously implicated only females in the analysis. Fractures in CANDOO were determined based on either self-reports or X-ray confirmation.
For the current study we examined the seven easily measured clinical risk factors for fracture outlined in the Fracture Index. Each risk factor was expressed as an independent variable. The major dichotomous risk factors abstracted were: vertebral, rib, wrist or hip fractures after age 50 (yes/no); maternal family history of fracture (yes/no); weight < 57 kg (≤ 57 kg, > 57 kg); smoking status (yes/no); use of arms to stand from seated position (yes/no). Non-dichotomous risk factors abstracted included: age (<65, 65–69, 70–74, 75–79, 80–84, 85+ years); bone mineral density total hip T-score (> -1, -1 to -2.5, ≤ -2.5) (measurements were made using dual energy X-ray absorptiometry using Lunar or Hologic densitometers) [13]. Adjustments for osteoporotic drug treatment and inclusion of the osteoporosis quality of life questionnaire (OQLQ) as a variable were considered.
Statistical analysis
Using the seven independent variables we conducted multivariate logistic regression analyses for each fracture type to identify which of the seven risk factors were related to fracture in patients from the CANDOO database.
While longitudinal databases are a powerful research tool, a common weakness is that of missing or incomplete data. To minimize the bias associated with missing data, multiple imputation was utilized to replace missing data prior to the analyses [14,15]. In this case, 10 complete data sets were generated. The multiple imputed datasets were then analyzed using standard procedures for complete data and the results were pooled. Odds ratios and the associated 95% confidence intervals were calculated.
Results
Baseline characteristics
A total of 3426 patients were evaluated. Of those patients examined, 99 developed a wrist fracture, 64 a rib fracture, 158 a vertebral fracture, 40 a new hip fracture and 3065 experienced no fracture. Individuals in CANDOO who developed multiple fractures, 53 in total, were excluded from the analyses. The mean age and weight of the patients was 68 years and 64 kg, respectively. Mean total hip T-score was -1.9.
Internal server error